On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent

نویسنده

  • Teodora-Liliana Dinu
چکیده

Abstract. We consider a class of nonlinear Dirichlet problems involving the p(x)–Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space. The proof relies on the Mountain Pass Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a p(x)-Kirchho equation via variational methods

This paper is concerned with the existence of two non-trivial weak solutions for a p(x)-Kirchho type problem by using the mountain pass theorem of Ambrosetti and Rabinowitz and Ekeland's variational principle and the theory of the variable exponent Sobolev spaces.

متن کامل

On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent

We consider the nonlinear eigenvalue problem −div ( |∇u|∇u ) = λ|u|u in Ω, u = 0 on ∂Ω, where Ω is a bounded open set in R with smooth boundary and p, q are continuous functions on Ω such that 1 < infΩ q < infΩ p < supΩ q, supΩ p < N , and q(x) < Np(x)/ (N − p(x)) for all x ∈ Ω. The main result of this paper establishes that any λ > 0 sufficiently small is an eigenvalue of the above nonhomogene...

متن کامل

On a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications

‎We present a Picone's identity for the‎ ‎$mathcal{A}_{p(x)}$-Laplacian‎, ‎which is an extension of the classic‎ ‎identity for the ordinary Laplace‎. ‎Also‎, ‎some applications of our‎ ‎results in Sobolev spaces with variable exponent are suggested.

متن کامل

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

Some functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition

‎Some functional inequalities‎ ‎in variable exponent Lebesgue spaces are presented‎. ‎The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non‎- ‎increasing function which is‎‎$$‎‎int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleq‎‎Cint_0^infty f(x)^{p(x)}u(x)dx‎,‎$$‎ ‎is studied‎. ‎We show that the exponent $p(.)$ for which these modular ine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005